Preview

Scientific notes of the Russian academy of entrepreneurship

Advanced search

Modern approaches to forecasting fertility

Abstract

The article presents an analytical review of approaches to birth forecasting developed in recent decades and actively used in practice. The approaches are divided into four classes: extrapolation, interpolation, based on the theory of reproductive behavior and multicausal. Among the extrapolation approaches, special attention is paid to Lee, Hyndman and Ullah models, which are representing a variety of time series models. We analyze the use of such functions of age-specific fertility distribution as the functions of Coale-Trussel, Hadwiger, beta- and gamma-distributions, double exponential Rogers function, polynomial models or spline functions (for example, the square spline function of Schmertmann), Pearson's curve of the first type. These models differ in the number of parameters and their demographic interpretability.

About the Authors

E. Yu. Dorokhina
Plekhanov Russian University of Economics
Russian Federation


N. A. Markelova
Plekhanov Russian University of Economics
Russian Federation


References

1. Дорохина Е.Ю., Маркелова Н.А. Современные подходы к прогнозированию воспроизводства населения// В сборнике: Economics, Law, Society: Resume of 2016 The International Scientific and Practical Web-Congress of Economists and Jurists. ISAE «Consilium». 2016. С. 247-251

2. Saboia, Joao Luiz M.: Autoregressive Integrated Moving Average (ARIMA) Models for Birth Forecasting. In: Journal ofthe American Statistical Association 72 (1977), Nr. 358, PP. 264-270.

3. Lee, Ronald D.: Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level. In: International Journal of Forecasting 9 (1993), PP. 187-202.

4. Hyndman, Rob J.; Ullah, Md S.: Robust forecasting of mortality and fertility rates: A functional data approach. In: Computational Statistics and Data Analysis 51 (2007), Nr. 10, PP. 4942-4956.

5. Hoem, Jan M.; Madsen, Dan; Nielsen, Jorgen L.; Ohlsen, Else-Marie; Hansen, Hans O.; Rennermalm, Bo: Experiments in Modelling Recent Danish Fertility Curves. In: Demography 18 (1981), Nr. 2, PP. 231-244.

6. Peristera, Paraskevi; Kostaki, Anastasia: Modeling fertility in modern populations. In: Demographic Research 16 (2007), PP. 141-194.

7. Chandola, T.; Coleman, D. A.; Hiorns, R. W.: Recent European fertility patterns: Fitting curves to «distorted»distributions. In: Population Studies 53 (1999), Nr. 3, PP. 317-329.

8. Easterlin, Richard A.: Relative economic status and the American fertility swing. In: Sheldon, Eleanor B. (Hrsg.): Family Economic Behavior: Problems and Prospects. Lippincott, 1973. PP. 170-227.

9. Lee, Ronald D.: Demographic Forecasting and the Easterlin Hypothesis. In: Population and Development Review 2 (1976), Nr. 3/4, PP. 459-468.

10. Ryder, Norman B.: The Future ofAmerican Fertility. In: Social Problems 26 (1979), Nr. 3, PP. 359-370.

11. Alders, Maarten; de Beer, Joop: Assumptions on Fertility in Stochastic Population Forecasts. In: International Statistical Review 72 (2004), Nr. 1, PP. 65-79.

12. Alders, Maarten; Keilman, Nico; Cruijsen, Harri: Assumptions for long-term stochastic population forecasts in 18 European countries. In: European Journal of Population and Development Review 23 (2007), Nr. 1, S. 33-69.


Review

For citations:


Dorokhina E.Yu., Markelova N.A. Modern approaches to forecasting fertility. Scientific notes of the Russian academy of entrepreneurship. 2018;17(2):149-161. (In Russ.)

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6258 (Print)