Preview

Scientific notes of the Russian academy of entrepreneurship

Advanced search

Metamodern digital trends as a factor in increasing the productivity of agricultural organizations

https://doi.org/10.24182/2073-6258-2020-19-3-136-145

Abstract

The article identifies the main features of the metamodern - the era of fluctuations between structured and systemic modernity and vague and indefinite postmodernity. The technological trends of the era are revealed - digitalization of all spheres of civilization's life, their impact on the socio-economic ecosystem is determined. The author notes the penetration of digital technologies into all spheres of the economy, and, in particular, into the agro-industrial sector. The factors hindering the introduction of digital technologies in the agro-industrial complex are identified. The most important digital technologies that can increase the productivity of agricultural production have been identified. The scientific work used the logical and historical research methods, the comparative method, the analogy method, the systematic approach. The conclusion is made about the influence of digital trends of metamodern on the agricultural sector of the country's national economy as a factor in increasing the productivity of agricultural enterprises and their competitiveness in the domestic and world markets.

About the Author

G. .. Ryazanova
State University of Management
Russian Federation


References

1. György M. Vajda. Some Aspects of Art Nouveau in Arts and Letters. The Journal of Aesthetic Education.Vol. 14, No. 4, Special Issue: The Government, Art, and Aesthetic Education (Oct., 1980), pp. 73-84. Published by: University of Illinois Press. DOI: 10.2307/3332370

2. Сазанова С.Л. Вызовы метамодерна и их влияние на современную экономическую науку. Путеводитель предпринимателя. 2019. № 44. С. 172-179.

3. Сазанова С.Л., Рязанова Г.Н. Социально-экономические экосистемы в современном агропромышленном бизнесе. Ученые записки Российской Академии предпринимательства. 2020. Т. 19. № 1. С. 154-170. https://elibrarv.ru/download/elibrary_42617184_71503884.pdf.

4. Камалетдинов А.Ш., Ксенофонтов А.А. Процессный подход к управлению как инструмент повышения эффективности хозяйственной деятельности организации. В сборнике: Управленческие науки в современном мире. Сборник докладов научной конференции. 2019. С. 279-285.

5. Belloso L.B. Metamodernism The last dialectic. Critic-all: II International conference of architectural design & criticism. Proceedings Paper. 2016. Pp. 71-79.

6. Глазьев С.Ю. Перспективы становления в мире нового VI технологического уклада. Научно-практический журнал Мир. Апрель-июнь 2010. С. 4-10.

7. Шарипов Ф.Ф., Андрианова А.В., Мельник К.А. Сущность внешнеэкономической деятельности предприятия. В сборнике: Львовские чтения - 2018 Сборник статей VI Всероссийской научной конференции. Под научной редакцией Г.Б. Клейнера. 2018. С. 198-201.

8. Неопуло К.Л. О необходимости совершенствования государственной поддержки малого и среднего предпринимательства как фактора повышения предпринимательской активности малого бизнеса. Путеводитель предпринимателя. 2020. Т. 13. № 1. С. 137-145.

9. Moradi, H.; Avand, M.T.; Janizadeh, S. Landslide susceptibility survey using modeling methods. In Spatial Modeling in Gis and R for Earth and Environmental Sciences; Elsevier: New York, NY, USA, 2019. Pp. 259-275.

10. Nakano, Y.; Magezi, E.F. The impact of microcredit on agricultural technology adoption and productivity: Evidence from randomized control trial in Tanzania. World management. Vol. 133. Art. 104997. 2020. DOI: 10.1016/j.worlddev.2020.104997.

11. Taheri, K.; Shahabi, H.; Chapi, K.; Shirzadi, A.; Gutierrez, F.; Khosravi, K. Sinkhole susceptibility mapping: a comparison between bayes-based machine learning algorithms. Land Degrad. Dev. 2019, 30, Pp. 730-745.

12. Tezcan, Ahmet; Buyuktas, Kenan; Aslan, Serife Tulin Akkaya. A multi-criteria model for land valuation in the land consolidation. Land use policy. Vol. 95. 2020. DOI: 10.1016/j.landusepol.2020.104572.

13. Demirkan, Doga C.; Koz, Alper; Duzguna, H. Sebnem. Hierarchical classification of Sentinel 2-a images for land use and land cover mapping and its use for the CORINE system. Journal of applied remote sensing. Vol. 14. Issue 2. 2020. https://doi.org/ 10.1117/1JRS.14.026524.

14. Aryal, Dibit; Wang, Lei; Adhikari, Tirtha Raj. A Model-Based Flood Hazard Mapping on the Southern Slope of Himalaya. Water. Vol. 12. Issue 2. 2020. DOI: 10.3390/w12020540.

15. Li, Hongqing; Zhao, Yaoyang; Zheng, Fei. The framework of an agricultural land-use decision support system based on ecological environmental constraints. Science of the total environment. Vol. 717. 2020. DOI:10.1016/j.scitotenv.2020.137149.

16. Blanchard D.C. Serendipity, scientific discovery, and project cirrus - Walter Orr Roberts lecture. Bulletin of the American meteorological society. 1996. Vol. 77, Issue 6. Pp. 1276-1286.

17. Цирик О.А. Цифровая экономика - новый вектор развития современной экономики. Современная наука: идеи, которые изменят мир: материалы Всероссийской научно-практической конференции. 2018. С. 237-277.


Review

For citations:


Ryazanova G... Metamodern digital trends as a factor in increasing the productivity of agricultural organizations. Scientific notes of the Russian academy of entrepreneurship. 2020;19(3):136-145. (In Russ.) https://doi.org/10.24182/2073-6258-2020-19-3-136-145

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6258 (Print)